Exploration in Polynomials graphing

Given the polynomial:

$$
P(x)=x^{8}-10 x^{7}+47 x^{6}-120 x^{5}+135 x^{4}-10 x^{3}-67 x^{2}+100 x-156
$$

1. How many terms are there in $P(x)$?
2. What is the degree of the polynomial?
3. What is the sign of the leading coefficient?

You can already determine the end-behavior of the graph.
==
Given that the polynomial has roots at $x=3$, at $x=(2+3 i)$, at $(x=2)$ it has a root with multiplicity 2 , and a root at $x=i$, find all the remaining roots, and factor $\mathrm{P}(\mathrm{x})$ to it's linear or quadratic components.
=

Use the space below (and back) for computations, and summarize your results on the next page.

Write all 8 roots of the polynomial:
1.
2. \qquad
3. \qquad 4. \qquad
5. \qquad 6. \qquad
7. \qquad 8. \qquad

Plot the polynomial based on the above results, and compare your result with graphic calculator.

Remainder theorem

1. A. Given the polynomial

$$
P(x)=3 x^{5}+2 x^{4}-4 x^{2}+5 x+2
$$

Write it in the form

$$
P(x)=(x-1) \cdot(\ldots
$$

B. Can you find the remainder WITHOUT performing a division, but rather directly from $P(x)$?

1. Given the polynomial

$$
P(x)=x^{6}-2 x^{5}-4 x^{3}+5 x^{2}+6 x+3
$$

Write it in the form

$$
P(x)=(x-2)
$$

\qquad $+$ \qquad
2. Can you find the remainder WITHOUT performing a division, but rather directly from $P(x)$?

